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Summary

This work considers a mathematical model of epidemic dynamics, focusing on the effi-

ciency of lockdown during the outbreak of a transmissible disease. Lockdown is one of

the effective methods to prevent the further spread of an epidemic, though it may bring

about economic and social difficulty in the community. Besides the lockdown may lead

to some inconvenience in people’s life and may cause some psychological disorders. To

balance the epidemic control and social activities, the policymaker needs to choose a

better policy to take account of a balance of them. In this research project, we consider

a simple mathematical model of epidemic dynamics to theoretically discuss the efficiency

of lockdown, for which we introduce some different types with respect to the degree of

restriction on social activity. The efficiencies are compared to each other according to

the endemic size, that is, the number of infective individuals at the endemic equilibrium.

In our modeling, we introduce the isolation of infected individuals under the medical

treatment in the hospital. By the mathematical analysis on our model, we find that the

complete and strong lockdown has the same endemic size, smaller than the weak lock-

down. The weak lockdown with minimal restriction on mobility has the lowest efficiency

in suppressing the spread of an epidemic.

1



Acknowledgements

First of all, I would like to express my heartfelt thanks to all the people who helped me

during the writing of this thesis.

My deepest gratitude goes first and foremost to my supervisor, Professor Seno, for his

invaluable instruction and inspiration. Without his kind encouragement and professional

guidance, this thesis could not have reached its present form.

Second, I would like to express my sincere appreciation to all teachers whose insight-

ful lectures I benefited greatly. I am also extremely grateful to all members of Seno

Laboratory who have offered comments and helped me a lot.

Finally, my thanks would go to my beloved family and friends for their unfailing love

and unwavering support.

2



Contents

1 Introduction 4

2 Mathematical Modeling 5

2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Epidemic dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Different types of lockdown . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Basic Reproduction Numbers 8

4 Existence and Stability of Equilibrium 9

4.1 Disease-free equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Endemic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Endemic size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 The Order of Endemic Sizes 10

6 Discussion 12

Bibliography 13

Appendix A. Derivation of the basic reproduction numbers 14

Appendix B. Proof of Theorem 4.1 16

Appendix C. Proof of Lemma 4.1 17

Appendix D. Proof of Theorem 4.2 19

3



1 Introduction

In addition to the vaccination and medical treatment, the lockdown can be regarded as

a basic strategy for the public health to suppress the spread of a transmissible disease

in a community. Especially in some regions with poor medical infrastructure and low

emergency response capacity, the lockdown could play a role to give the government

and decisionmaker a sufficient time to arrange a strategy for controling the epidemic

(Lytras and Tsiodras, 2021). The essential role of lockdown is however to reduce the

frequency and duration of contacts between individuals in the community. Such a strat-

egy includes closing schools and workplaces, preventing from being outside or gathering,

restricting the access to public places (e.g., public transportations), and so on (Oraby

et al., 2021). Although such a strict restriction has an important role in suppressing the

disease transmission in a community, the economic development must tend to face with

great challenges due to the decline in the social activities under it, as seen in the COVID-

19 pandemic (Nicola et al., 2020). According to Coccia (2021), it is uncertain whether

the long-term lockdown can reduce the number of COVID-19 infected individuals and

deaths, and the longer lockdown has a negative impact on the economy. Especially, the

economy related to tourism has been severely affected (Wilder-Smith, 2006). Not only

the closure of factories and stores has had a great impact on relevant industries (e.g.,

retail), but also consumers’ spending has declined due to restrictive measures and re-

duced income (Lu et al., 2021). Tonnoir et al. (2021) considered a mathematical model

to investigate the optimal investment strategy under the lockdown situation, and de-

rived that it is difficult to ensure both the reduction of regional disparities and economic

growth. Furthermore, Ganesan et al. (2021) mentioned that the prolonged lockdown

may cause some problems in the physical and mental health. Hence, it is necessary to

consider whether a lockdown could allow a balance between the epidemic control and

the social activities.

In this work, we consider a simple mathematical model to investigate the efficiency

of different types of lockdown according to the endemic size, that is, the number of

infective individuals at the endemic equilibrium. In our modeling, we introduce different

restrictions on the mobility of individuals and define four types of lockdown: complete

lockdown, strong lockdown, weak lockdown type 1, and type 2. The mathematical

analysis on our model shows the existence and stability of possible equilibria and compare

those four types of lockdown to discuss which type of the lockdown is better according

to the endemic size.
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Figure 2.1: Scheme of the epidemic dynamics in our model (2.1).

2 Mathematical Modeling

2.1 Assumptions

The movement of population must accelerate the spread of an epidemic, which is a

fundamental cause of a long-range epidemic transmission. In this work, we consider a

simple mathematical model of epidemic dynamics with the following assumptions:

• The disease is not fatal;

• The community is composed of the peripheral area (area 1) and the central area

(area 2) with different qualities of the medical treatment for the disease;

• Susceptible individuals of one area can temporarily visit to the other area;

• Some infective individuals of the peripheral area (area 1) can get the medical

treatment at the central area (area 2), for example, transported by ambulance;

• Recovered individual becomes susceptible again;

• The population size is constant in each area according to the epidemic dynamics.

2.2 Epidemic dynamics

As shown in Figure 2.1, Si denotes the population density of healthy individuals in area

i who can be infected, Ii that of individuals in area i who have been infected and are able

to transmit the disease, and Hij that of individuals belonging to area j who are infective
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and under the medical treatment in area i. We construct the following mathematical

model expressed by the system of ordinary differential equations:

dS1
dt

= −β1I1S1 − α1β2I2S1 + θ1H11 + θ2H21;

dI1
dt

= β1I1S1 + α1β2I2S1 − γ1I1;

dH11

dt
= (1− p)γ1I1 − θ1H11;

dH21

dt
= pγ1I1 − θ2H21;

dS2
dt

= −β2I2S2 − α2β1I1S2 + θ2H22;

dI2
dt

= β2I2S2 + α2β1I1S2 − γ2I2;

dH22

dt
= γ2I2 − θ2H22,

(2.1)

where βi is the infection coefficient in area i, which represents the effective infectivity of

the transmissible disease. αiβj is the infection coefficient during the temporary visit to

area j, which is smaller than βj (0 < αi < 1). γi is the treatment rate of the infective in

area i, and θi is the recovery rate by the medical treatment in area i. p is the proportion

of infectives belonging to the peripheral area, who get the medical treatment in the

central area (0 ≤ p ≤ 1). From the assumption, it holds that S1 + I1 +H11 +H21 = N1,

S2 + I2 +H22 = N2 for any time t with positive constants N1 and N2.

With the frequencies ϕi = Si/Ni, ψi = Ii/Ni, ζij = Hij/Nj , the area-specified basic

reproduction numbers Rr
0 = β1N1/γ1 for the peripheral area and Rc

0 = β2N2/γ2 for the

central area, we can transform the system (2.1) to

dϕ1
dt

= −Rr
0γ1ψ1ϕ1 − Rc

0γ2α1ψ2ϕ1 + θ1ζ11 + θ2ζ21;

dψ1

dt
= Rr

0γ1ψ1ϕ1 + Rc
0γ2α1ψ2ϕ1 − γ1ψ1;

dζ11
dt

= (1− p)γ1ψ1 − θ1ζ11;

dζ21
dt

= pγ1ψ1 − θ2ζ21;

dϕ2
dt

= −Rc
0γ2ψ2ϕ2 − Rr

0γ1α2ψ1ϕ2 + θ2ζ22;

dψ2

dt
= Rc

0γ2ψ2ϕ2 + Rr
0γ1α2ψ1ϕ2 − γ2ψ2;

dζ22
dt

= γ2ψ2 − θ2ζ22,

(2.2)

6



(a)

(b)

Figure 2.2: Numerical examples of the temporal variation of the frequencies by the
system (2.2). (Rr

0 ,R
c
0) = (a) (0.4, 0.7); (b) (1.5, 1.2). Commonly, α1 = α2 = 0.5;

θ1 = 0.6; θ2 = 0.8; γ1 = 0.5; γ2 = 0.8; p = 0.4.

where ϕ1 + ψ1 + ζ11 + ζ21 = 1, and ϕ2 + ψ2 + ζ22 = 1. As for the area-specified basic

reproduction numbers Rr
0 and Rc

0, we will give the detail later in Section 3. Figure 2.2

shows numerical examples of the temporal variation of the frequencies by the system

(2.2) when the disease is extinct and persistent respectively.

2.3 Different types of lockdown

Depending on the population size, the severity of pandemic, the economic level, the

medical condition, and the living customs in each region, it would be necessary to adopt

an appropriate type of lockdown policy. In this work, we consider different levels of

restriction on individuals’ mobility.

Without the lockdown in our model, the temporary visit of susceptibles is allowed

in each area, and infectives of the peripheral area may get the medical treatment in

the central area (generally supposing that the central area has a higher quality of the

medical treatment than that in the peripheral area). Table 2.1 shows four different

types of the lockdown which we introduce in our model. Under the weak lockdown
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type 1, only susceptibles of the peripheral area are prohibited to visit the central area.

Under the weak lockdown type 2, only susceptibles of the central area are prohibited to

visit the peripheral area. Under the strong lockdown, the movement of any susceptibles

between two areas is prohibited. For these three types of lockdown, infectives of the

peripheral area may get the medical treatment in the central area. In contrast, under the

complete lockdown, two areas become fully independent of each other and any movement

is prohibited between them, and infectives of the peripheral area cannot get the medical

treatment in the central area.

3 Basic Reproduction Numbers

The basic reproduction number R0 is the expected supremum number of secondary cases

produced in a totally susceptible population by a single infective individual during the

time span of active infectivity (Iannelli and Pugliese, 2015). If R0 < 1, the number of

infectives decreases and the disease will disapper after its invasion in the community.

Only if R0 > 1, the disease could persist after its invasion in the community.

As described in Appendix A for the model (2.1), we can derive the area-specified

basic reproduction numbers Rr
0 = β1N1/γ1 for the peripheral area and Rc

0 = β2N2/γ2

for the central area respectively. These are the basic reproduction numbers for each

area when two areas are fully isolated, that is, the movement of susceptible individuals

between them is prohibited. In contrast, the basic reproduction number for the full

epidemic dynamics governed by (2.1) can be mathematically defined as

R0 =
Rr

0 + Rc
0 +

√
(Rr

0 − Rc
0)

2 + 4α1α2Rr
0R

c
0

2
, (3.1)

which is the basic reproduction number for the whole community with the mobility

of susceptible individuals. We can easily find that R0 > Rr
0 and R0 > Rc

0. When

Table 2.1: Different types of lockdown for our model (2.1).

α1 α2 p

Weak lockdown type 1 0 + +

Weak lockdown type 2 + 0 +

Strong lockdown 0 0 +

Complete lockdown 0 0 0
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α1α2 = 0, that is, under a lockdown introduced in the previous section, we have R0 =

max {Rr
0 ,R

c
0} from (3.1).

4 Existence and Stability of Equilibrium

4.1 Disease-free equilibrium

Disease-free equilibrium is defined as an equilibrium state without the disease. For the

model (2.2), it becomes E0(1, 0, 0, 0, 1, 0, 0). By the eigenvalue analysis on the Jacobian

matrix for E0, we can obtain the following result on the local stability (Appendix B):

Theorem 4.1. Disease-free equilibrium E0(1, 0, 0, 0, 1, 0, 0) is unstable if one of the fol-

lowing conditions is satisfied:

(i) Rr
0 ≥ 1;

(ii) Rc
0 ≥ 1;

(iii)
( 1

Rr
0

− 1
)( 1

Rc
0

− 1
)
< α1α2.

When the mobility of susceptible individuals is sufficiently large, that is, with suf-

ficiently large α1α2, E0 is unstable with the condition Rr
0 < 1 and Rc

0 < 1. When

α1α2 = 0, that is, the mobility of susceptible individuals is prohibited for any of two

areas, E0 is unstable if and only if the disease persists at least in one of two areas.

4.2 Endemic equilibrium

Endemic equilibrium means an equilibrium state at which the number of infectives keeps

a positive value for any time t. As shown in Appendix C, we can get the following result

on the existence of a unique endemic equilibrium E∗(ϕ∗1, ψ
∗
1, ζ

∗
11, ζ

∗
21, ϕ

∗
2, ψ

∗
2, ζ

∗
22):

Lemma 4.1. Endemic equilibrium E∗ uniquely exists if and only if one of the conditions

(i), (ii) and (iii) in Theorem 4.1 is satisfied, independently of which type of lockdown is

adopted to the community.

Especially we can show the global stability of E∗ under the complete or strong

lockdown, making use of the Lyapunov function (Appendix D):

Theorem 4.2. Under the strong lockdown with α1 = α2 = 0 or the complete lockdown

with α1 = α2 = p = 0, the endemic equilibrium E∗ is globally asymptotically stable when

it exists.
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We have not obtained any mathematical result on the global stability of E∗ under

the weak lockdown or no lockdown. Numerical calculations of the dynamics by (2.2)

imply that it would be globally asymptotically stable when it exists.

4.3 Endemic size

The proportion of population size in the peripheral area and central area is defined by

ρ := N1/N2. We define here the endemic size as the total number of infective individuals

in the community at the endemic equilibrium E∗. For our model (2.2), we define it by

Ψ∗ := (N1 +N2 − S∗
1 − S∗

2)/(N1 +N2) = 1− (ρϕ∗1 + ϕ∗2)/(1 + ρ). We now designate the

endemic sizes under the complete, strong, and weak (type 1 and 2) lockdowns respectively

by Ψ∗
c , Ψ

∗
s, Ψ

∗
w1 and Ψ∗

w2. We can get the following formulas of them from (2.2):

Ψ∗
c =

ρ

1 + ρ

(
1− 1

Rr
0

)
+

1

1 + ρ

(
1− 1

Rc
0

)
;

Ψ∗
s =

ρ

1 + ρ

(
1− 1

Rr
0

)
+

1

1 + ρ

(
1− 1

Rc
0

)
;

Ψ∗
w1 =

ρ

1 + ρ

(
1− 1

Rr
0

)
+

1

1 + ρ
(1− ϕ∗2);

Ψ∗
w2 =

ρ

1 + ρ
(1− ϕ∗1) +

1

1 + ρ

(
1− 1

Rc
0

)
,

where ϕ∗1 is the smaller root of the following quadratic equation of x, which is less than

1/Rr
0 :

Rr
0γ1θ1θ2x

2 −
{
(Rr

0 + 1)γ1θ1θ2 +Rc
0α1ψ

∗
2γ2

[
θ1θ2 + (1− p)γ1θ2 + pγ1θ1

]}
x+ γ1θ1θ2 = 0

with ψ∗
2 = θ2[1 − (1/Rc

0)]/(θ2 + γ2). ϕ
∗
2 is the smaller root of the following quadratic

equation of x, which is less than 1/Rc
0:

Rc
0γ2θ2x

2 −
[
(Rc

0 + 1)γ2θ2 + Rr
0α2ψ

∗
1γ1(γ2 + θ2)

]
x+ γ2θ2 = 0

with ψ∗
1 = θ1θ2[1− (1/Rr

0)]/[θ1θ2 + (1− p)γ1θ2 + pγ1θ1].

5 The Order of Endemic Sizes

Since ϕ∗1 < 1/Rr
0 and ϕ∗2 < 1/Rc

0, we can easily obtain the order of endemic sizes

Ψ∗
c = Ψ∗

s < Ψ∗
w•. The weak lockdown with minimal restrictions has the least effect on

preventing the spread of the epidemic.

10



(푎) (푏)

푝

휃�

훹��∗ <훹��∗

훹��∗ <훹��∗

훹��∗ > 훹��∗ 훹��∗ > 훹��∗

Figure 5.1: Parameter dependence of the order of epidemic sizes for the two types weak
lockdown. Numerically drawn with (a) θ2 = 0.6; (b) θ2 = 1.5. Commonly, ρ = 0.5;
γ1 = 0.5; γ2 = 0.9; α1 = α2 = 0.5; Rr

0 = 2; Rc
0 = 3.

Population distribution

The efficiency of two types of weak lockdown is dependent on the parameter ρ, the

population distribution of the whole community. ρ is sufficiently small if the population

density of the central area is sufficiently larger than that of the peripheral area. In this

case, the endemic size is primarily influenced by the endemic size of the central area, we

can get that the weak lockdown type 2 is better than type 1. Inversely, if we consider

the sufficient large population size of the peripheral area, we can get the opposite result.

Therefore, a more efficient weak lockdown is the prohibition of mobility for susceptible

individuals from an area of high population density to that of low population density.

Hospitalization period

In our model, hospitalization period is given by 1/θ•. The extended hospitalization

period aims to reduce the pool of susceptible individuals and slow the spread of the

epidemic. Referring to Figure 5.1, when hospitalization period of the peripheral area is

longer than that of central area, raising the proportion of infected individuals from the

peripheral area to get medical treatment in the central area could result in an increase in

the endemic size of the peripheral area. Furthermore, for a specific value of p, an extended

hospitalization period in the central area requires a longer hospitalization period in the

peripheral area to ensure that weak lockdown type 1 is better than type 2.

11



6 Discussion

We consider an SIS+H model, where H represents the isolated state in the community.

In our model, we assume the community is composed by two areas. The basic reproduc-

tion of the whole epidemic system is larger than that of each area, which implies that

individuals’ mobility could accelerate the spread of transmissible disease. Lockdown is a

strategy for preventing mobility which could play a significant role to reduce the spread

of the epidemic at the early stage, some countries or regions may implement this policy.

In order to achieve a balance between epidemic control and individuals’ activity, we need

to investigate the efficiency of lockdown policy at the outbreak of epidemic. We consider

four types of lockdown by introducing different levels of restriction on individuals’ mo-

bility. The mathematical results of the comparison of endemic size for these four types

of lockdown indicate that the complete and strong lockdown has the same endemic size,

smaller than the weak lockdown. Allowing peripheral infected individuals to get medical

treatment in the central area does not have an effect on the endemic size. The weak

lockdown with minimal restriction on mobility has the lowest efficiency in suppressing

the spread of an epidemic. The population difference between these two areas plays an

important role in comparing the endemic size of two types of weak lockdown. For the

weak lockdown, more efficient is the prohibition of mobility for susceptible individuals

from an area of high population density to that of low population density. When the

hospital in the central area has a sufficiently longer isolation period than the peripheral

area, free infectives under the strong lockdown are less than those under the complete

lockdown.

In this work, we just consider the fixed lockdown policy. For the further research, I

am going to study the effect of flexible lockdown, which means the implementation of

the mobility restriction changes according to the change of the infection status. This

kind of flexible lockdown policy may help to alleviate the economic recession caused by

the epidemic to a certain extent.
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Appendix A. Derivation of the basic reproduction numbers

First, we define the area-specific basic reproduction number Rr
0 for the peripheral area.

Let we consider the initial stage of the disease invasion in the peripheral area, at t = 0.

The number of infective individuals in the peripheral area is sufficiently small. If the

disease invasion is successful, the number of infective individuals in the peripheral area

increases after it, that is,

dI1
dt

∣∣∣∣
t=0

=
(
β1S1(0)− γ1

)
I1(0) > 0.

This occurs if and only if
β1S1(0)

γ1
> 1. (A.1)

If the inequality of (A.1) is inverse, the disease invasion fails, and the number of infective

individuals decreases in the peripheral area.

From the biological definition of the basic reproduction number, the disease invasion

is successful only if Rr
0 > 1, while it fails if Rr

0 < 1. Since the basic reproduction number

is conceptually defined as the expected number of secondary cases by a single infective

individual in a totally susceptible population during the infection, we can define Rr
0 as

the supremum of the value β1S1(0)/γ1 from the condition (A.1) as follows:

Rr
0 := sup

S1(0)

β1S1(0)

γ1
=
β1N1

γ1
.

From this definition of Rr
0 , we have dI1/dt > 0 only when Rr

0 > 1. When Rr
0 < 1, we

have dI1/dt < 0. The derivation of the area-specified basic reproduction number Rc
0 for

the central area is the same as that of Rr
0 , and we can define Rc

0 := β2N2/γ2.

In order to mathematically derive the basic reproduction number R0 for the commu-

nity, we use here the method of the next generation matrix (Brauer and Castillo-Chavez,

14



2012). Firstly, we change the order of equations in (2.2) for a mathematical convenience:

dψ1

dt
= Rr

0γ1ψ1ϕ1 + Rc
0γ2α1ψ2ϕ1 − γ1ψ1;

dψ2

dt
= Rc

0γ2ψ2ϕ2 + Rr
0γ1α2ψ1ϕ2 − γ2ψ2;

dϕ1
dt

= −Rr
0γ1ψ1ϕ1 − Rc

0γ2α1ψ2ϕ1 + θ1ζ11 + θ2ζ21;

dϕ2
dt

= −Rc
0γ2ψ2ϕ2 − Rr

0γ1α2ψ1ϕ2 + θ2ζ22;

dζ11
dt

= (1− p)γ1ψ1 − θ1ζ11;

dζ21
dt

= pγ1ψ1 − θ2ζ21;

dζ22
dt

= γ2ψ2 − θ2ζ22.

(A.2)

Next we decompose the above system as the form

dX

dt
= F (X)− V (X),

where X = (ψ1(t), ψ2(t), ϕ1(t), ϕ2(t), ζ11(t), ζ21(t), ζ22(t))
T . F contains only the recruit-

ment terms of the infection, and V does the other factors in (A.2):

F :=


Rr

0γ1ψ1ϕ1+Rc
0γ2α1ψ2ϕ1

Rc
0γ2ψ2ϕ2+Rr

0γ1α2ψ1ϕ2
0
0
0
0
0

 ; V :=


γ1ψ1

γ2ψ2

Rr
0γ1ψ1ϕ1+Rc

0γ2α1ψ2ϕ1−θ1ζ11−θ2ζ21
Rc

0γ2ψ2ϕ2+Rr
0γ1α2ψ1ϕ2−θ2ζ22

−(1−p)γ1ψ1+θ1ζ11
−pγ1ψ1+θ2ζ21
−γ2ψ2+θ2ζ22

 .

The Jacobian matrices of F and V are now obtained as

DF (X) :=


Rr

0γ1ϕ1 Rc
0γ2α1ϕ1 Rr

0γ1ψ1+Rc
0γ2α1ψ2 0 0 0 0

Rr
0γ1α2ϕ2 Rc

0γ2ϕ2 0 Rc
0γ2ψ2+Rr

0γ1α2ψ1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ;

DV (X) :=


γ1 0 0 0 0 0 0
0 γ2 0 0 0 0 0

Rr
0γ1ϕ1 Rc

0γ2α1ϕ1 Rr
0γ1ψ1+Rc

0γ2α2ψ2 0 −θ1 −θ2 0
Rr

0γ1α2ϕ2 Rc
0γ2ϕ2 0 Rc

0γ2ψ2+Rr
0γ1α2ψ1 0 0 −θ2

−(1−p)γ1 0 0 0 θ1 0 0
−pγ1 0 0 0 0 θ2 0
0 −γ2 0 0 0 0 θ2

 .
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For the disease-free equilibrium X0 = (0, 0, 1, 1, 0, 0, 0)T , we have

DF (X0) :=


Rr

0γ1 Rc
0γ2α1 0 0 0 0 0

Rr
0γ1α2 Rc

0γ2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

 ; DV (X0) :=


γ1 0 0 0 0 0 0
0 γ2 0 0 0 0 0

Rr
0γ1 Rc

0γ2α1 0 0 −θ1 −θ2 0
Rr

0γ1α2 Rc
0γ2 0 0 0 0 −θ2

−(1−p)γ1 0 0 0 θ1 0 0
−pγ1 0 0 0 0 θ2 0
0 −γ2 0 0 0 0 θ2

 .

By the upper left 2× 2 block matrix for each of DF (X0) and DV (X0), we define

F :=

 Rr
0γ1 Rc

0γ2α1

Rr
0γ1α2 Rc

0γ2

 ; V :=

γ1 0

0 γ2

 .

Then we can derive the next generation matrix

K = FV−1 =

 Rr
0 Rc

0α1

Rr
0α2 Rc

0

 .

Since the basic reproduction number R0 is given by the maximum absolute value of the

eigenvalues of K (Brauer and Castillo-Chavez, 2012), we can get the basic reproduction

number R0 given by (3.1).

Appendix B. Proof of Theorem 4.1

From (2.2), the Jacobian matrix at the disease-free equilibrium E0(1, 0, 0, 0, 1, 0, 0) be-

comes

J(1, 0, 0, 0, 1, 0, 0) :=


0 −Rr

0γ1 θ1 θ2 0 −Rc
0γ2α1 0

0 (Rr
0−1)γ1α2 0 0 0 Rc

0γ2 0

0 (1−p)γ1 −θ1 0 0 0 0
0 pγ1 0 −θ2 0 0 0
0 −Rr

0γ1α2 0 0 0 −Rc
0γ2 θ2

0 Rr
0γ1α2 0 0 0 (Rc

0−1)γ2 0
0 0 0 0 0 γ2 −θ2

 .

The characteristic equation of this Jacobian matrix can be obtained as

λ2(λ+ θ2)
2(λ+ θ1)

{[
λ− (Rr

0 − 1)γ1
][
λ− (Rc

0 − 1)γ2
]
− α1α2γ1γ2R

r
0R

c
0

}
= 0.

Then we find −θ1, and degenerated 0, −θ2 as the eigenvalues. Besides, we have a

quadratic equation given by the last factor in the left side, which determines the other

two eigenvalues λ1 and λ2. Since the discriminant of the quadratic equation is always
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positive, λ1 and λ2 are necessarily real. We can easily find that both λ1 and λ2 are

non-positive if and only if
(Rr

0 − 1)γ1 < 0;

(Rc
0 − 1)γ2 < 0;

(Rr
0 − 1)(Rc

0 − 1) ≥ α1α2Rr
0R

c
0.

If one of the above three conditions is unsatisfied, λ1 or λ2 is positive. In such a case,

the disease-free equilibrium is unstable. The result leads to Theorem 4.1.

Appendix C. Proof of Lemma 4.1

Consider the existence of an endemic equilibrium E∗(ϕ∗1, ψ
∗
1, ζ

∗
11, ζ

∗
21, ϕ

∗
2, ψ

∗
2, ζ

∗
22) with

ψ∗
1 > 0 or ψ∗

2 > 0. From (2.2), we can derive the following relations of ψ∗
1 and ψ∗

2:

θ1θ2 + (1− p)γ1θ2 + pγ1θ1
θ1θ2

ψ∗
1 =

Rc
0γ2α1ψ

∗
2 + (Rr

0 − 1)γ1ψ
∗
1

Rr
0γ1ψ

∗
1 + Rc

0γ2α1ψ∗
2

;

θ2 + γ2
θ2

ψ∗
2 =

Rr
0γ1α2ψ

∗
1 + (Rc

0 − 1)γ2ψ
∗
2

Rc
0γ2ψ

∗
2 + Rr

0γ1α2ψ∗
1

,

that is,

ψ∗
2 = − Rr

0γ1
Rc

0γ2α1
ψ∗
1 −

γ1ψ
∗
1

Rc
0γ2α1(Aψ∗

1 − 1)
= f(ψ∗

1);

ψ∗
1 = − Rc

0γ2
Rr

0γ1α2
ψ∗
2 −

γ2ψ
∗
2

Rr
0γ1α2(Bψ∗

2 − 1)
= g(ψ∗

2),

where A :=
[
θ1θ2 + (1 − p)γ1θ2 + pγ1θ1

]
/
(
θ1θ2

)
and B :=

(
θ2 + γ2

)
/θ2. The curve of

f(ψ1) has asymptotes ψ1 = 1/A and

ψ2 = − Rr
0γ1

Rc
0γ2α1

ψ1 −
γ1

ARc
0γ2α1

.

The curve of g(ψ2) has asymptotes ψ2 = 1/B and

ψ1 = − Rc
0γ2

Rr
0γ1α2

ψ2 −
γ2

BRr
0γ1α2

.
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We have

f ′(ψ1) =
γ1

Rc
0γ2α1

[ 1

(Aψ1 − 1)2
− Rr

0

]
> 0

if and only if

1

A

(
1−

√
Rr

0

Rr
0

)
< ψ1 <

1

A
,
1

A
< ψ1 <

1

A

(
1 +

√
Rr

0

Rr
0

)
.

Further we have

f

(
1

A

(
1−

√
Rr

0

Rr
0

))
= −

γ1
(
1−

√
Rr

0

)2
ARc

0γ2α1
< 0; f

(
1

A

(
1 +

√
Rr

0

Rr
0

))
= −

γ1
(
1 +

√
Rr

0

)2
ARc

0γ2α1
< 0.

When ψ1 →
(
1/A

)
−0

, f(ψ1) → +∞, and when ψ1 →
(
1/A

)
+0

, f(ψ1) → −∞. Similarly,

g′(ψ2) =
γ2

Rr
0γ1α2

[ 1

(Bψ2 − 1)2
− Rc

0

]
> 0

if and only if

1

B

(
1−

√
Rc

0

Rc
0

)
< ψ2 <

1

B
,
1

B
< ψ2 <

1

B

(
1 +

√
Rc

0

Rc
0

)
.

Further we have

g

(
1

B

(
1−

√
Rc

0

Rc
0

))
= −

γ2
(
1−

√
Rc

0

)2
BRr

0γ1α2
< 0; g

(
1

B

(
1 +

√
Rc

0

Rc
0

))
= −

γ2
(
1 +

√
Rc

0

)2
BRr

0γ1α2
< 0.

When ψ2 →
(
1/B

)
−0

, g(ψ2) → +∞, and when ψ2 →
(
1/B

)
+0

, g(ψ2) → −∞. Since

1/A and 1/B are asymptotes of f(ψ1) and g(ψ2) respectively, and both are less than

1, if Rr
0 > 1 or Rc

0 > 1, two curves f(ψ1) and g(ψ2) must have an intersection in the

(ψ1, ψ2) =
(
(0, 1), (0, 1)

)
-plane. We can directly obtain the conclusion from the (ψ1, ψ2)-

plane that the endemic equilibrium E∗ exists. If Rr
0 < 1 and Rc

0 < 1, the endemic

equilibrium exists if and only if

f ′(ψ1)
∣∣
ψ1=0

<
1

g′(ψ2)|ψ2=0

,

that is,
(
1/Rr

0 − 1
)(
1/Rc

0 − 1
)
< α1α2. Hence, the conditions for existence of endemic

equilibrium E∗ are shown in Lemma 4.1.
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Appendix D. Proof of Theorem 4.2

Under the strong lockdown with α1 = α2 = 0, we can analyze the dynamics for the

peripheral area and central area separately. Supposing the endemic equilibrium of pe-

ripheral area E∗
1(ϕ

∗
1, ψ

∗
1, ζ

∗
11), the system of the epidemic dynamics for the peripheral

area can be described from (2.2) as follows:

dϕ1
dt

= −Rr
0γ1(ψ1 − ψ∗

1)(ϕ1 − ϕ∗1)− Rr
0γ1ψ

∗
1(ϕ1 − ϕ∗1)− θ2(ϕ1 − ϕ∗1)

− (γ1 + θ2)(ψ1 − ψ∗
1) + (θ1 − θ2)(ζ11 − ζ∗11);

dψ1

dt
= Rr

0γ1(ψ1 − ψ∗
1)(ϕ1 − ϕ∗1) + Rr

0γ1ψ
∗
1(ϕ1 − ϕ∗1);

dζ11
dt

= (1− p)γ1(ψ1 − ψ∗
1)− θ1(ζ11 − ζ∗11),

(D.1)

where ϕ∗1 = 1/Rr
0 ;

ψ∗
1 =

θ1θ2
θ1θ2 + (1− p)θ2γ1 + pθ1γ1

(1− ϕ∗1); ζ
∗
11 =

(1− p)θ2γ1
θ1θ2 + (1− p)θ2γ1 + pθ1γ1

(1− ϕ∗1).

Let us define the set Ω1 = {(ϕ1, ψ1, ζ11) | ϕ1 ≥ 0, ψ1 ≥ 0, ζ11 ≥ 0, ϕ1 + ψ1 + ζ11 ≤ 1}.
For the case of θ1 > θ2, we can find the following Lyapunov equation:

V (ϕ1, ψ1, ζ11) =
[
(ϕ1 − ϕ∗1) + (ψ1 − ψ∗

1) +
θ1 − θ2
θ1 + θ2

(ζ11 − ζ∗11)
]2

+
(θ1 − θ2)

[
θ2(2− p) + θ1p

]
(θ1 + θ2)2(1− p)

(ζ11 − ζ∗11)
2

+ 2

[
θ2(2− p) + θ1p

]
γ1 + 2θ2(θ1 + θ2)

(θ1 + θ2)Rr
0γ1

[
(ψ1 − ψ∗

1)− ψ∗
1 log

ψ1

ψ∗
1

]
,

(D.2)

which is positive for any (ϕ1, ψ1, ζ11) ̸= (ϕ∗1, ψ
∗
1, ζ

∗
11) in Ω1, and V (ϕ∗1, ψ

∗
1, ζ

∗
11) = 0.

Further,

dV (ϕ1, ψ1, ζ11)

dt
= −2θ2(ϕ1 − ϕ∗1)

2 − 2

{[
1− θ1 − θ2

θ1 + θ2
(1− p)

]
γ1 + θ2

}
(ψ1 − ψ∗

1)
2

− 2
(θ1 − θ2)

[
θ1θ2 + θ21p+ θ22(1− p)

]
(θ1 + θ2)2(1− p)

(ζ11 − ζ∗11)
2

becomes negative for any (ϕ1, ψ1, ζ11) ̸= (ϕ∗1, ψ
∗
1, ζ

∗
11) in Ω1, and zero for (ϕ1, ψ1, ζ11) =

(ϕ∗1, ψ
∗
1, ζ

∗
11).
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For the case of θ1 = θ2, we can find the following Lyapunov equation:

V (ϕ1, ψ1, ζ11) =
[
(ϕ1 − ϕ∗1) + (ψ1 − ψ∗

1)
]2

+
2(2θ1 + γ1)

Rr
0γ1

[
(ψ1 − ψ∗

1)− ψ∗
1 log

ψ1

ψ∗
1

]
which is positive for any (ϕ1, ψ1, ζ11) ̸= (ϕ∗1, ψ

∗
1, ζ

∗
11) in Ω1, and V (ϕ∗1, ψ

∗
1, ζ

∗
11) = 0.

Further,

dV (ϕ1, ψ1, ζ11)

dt
= −2θ1(ϕ1 − ϕ∗1)

2 − 2(γ1 + θ1)(ψ1 − ψ∗
1)

2

becomes negative for any (ϕ1, ψ1, ζ11) ̸= (ϕ∗1, ψ
∗
1, ζ

∗
11) in Ω1. When ϕ1 → ϕ∗1 and ψ1 → ψ∗

1,

obtain ζ ′11 → −θ1(ζ11 − ζ∗11). Then, denote ˜ζ11
′
= −θ1( ˜ζ11 − ζ∗11), since ζ

′
11 − ˜ζ11

′ → 0,

obtain |ζ11 − ˜ζ11| → 0, that is, ζ11 → ˜ζ11. With ˜ζ11 → ζ∗11, we get the result that

ζ11 → ζ∗11 when ϕ1 → ϕ∗1 and ψ1 → ψ∗
1. Hence dV (ϕ1, ψ1, ζ11)/dt becomes zero for

(ϕ1, ψ1, ζ11) = (ϕ∗1, ψ
∗
1, ζ

∗
11).

For the case of θ1 < θ2, considering the reduced system

dϕ1
dt

= −Rr
0γ1(ψ1 − ψ∗

1)(ϕ1 − ϕ∗1)− Rr
0γ1ψ

∗
1(ϕ1 − ϕ∗1)− θ1(ϕ1 − ϕ∗1)

− (γ1 + θ1)(ψ1 − ψ∗
1) + (θ2 − θ1)(ζ21 − ζ∗21);

dψ1

dt
= Rr

0γ1(ψ1 − ψ∗
1)(ϕ1 − ϕ∗1) + Rr

0γ1ψ
∗
1(ϕ1 − ϕ∗1);

dζ21
dt

= pγ1(ψ1 − ψ∗
1)− θ2(ζ21 − ζ∗21),

(D.3)

where ϕ∗1 = 1/Rr
0 , ψ

∗
1 = θ2(1− ϕ∗1)/(θ2 + pγ1), ζ

∗
21 = pγ1(1− ϕ∗1)/(θ2 + pγ1).

Let us define the set Ω2 = {(ϕ1, ψ1, ζ21) | ϕ1 ≥ 0, ψ1 ≥ 0, ζ21 ≥ 0, ϕ1 + ψ1 + ζ21 ≤ 1}, we
can find the following Lyapunov equation:

V (ϕ1, ψ1, ζ21) =
[
(ϕ1 − ϕ∗1) + (ψ1 − ψ∗

1) +
θ2 − θ1
θ1 + θ2

(ζ21 − ζ∗21)
]2

+
(θ2 − θ1)

[
θ2(1− p) + θ1(1 + p)

]
(θ1 + θ2)2p

(ζ21 − ζ∗21)
2

+ 2

[
θ2(1− p) + θ1(1 + p)

]
γ1 + 2θ1(θ1 + θ2)

(θ1 + θ2)Rr
0γ1

[
(ψ1 − ψ∗

1)− ψ∗
1 log

ψ1

ψ∗
1

]
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which is positive for any (ϕ1, ψ1, ζ21) ̸= (ϕ∗1, ψ
∗
1, ζ

∗
21) in Ω2, and V (ϕ∗1, ψ

∗
1, ζ

∗
21) = 0.

Further,

dV (ϕ1, ψ1, ζ21)

dt
= −2θ1(ϕ1 − ϕ∗1)

2 − 2

{[
1− (θ2 − θ1)p

θ1 + θ2

]
γ1 + θ1

}
(ψ1 − ψ∗

1)
2

− 2
(θ2 − θ1)

[
θ1θ2 + θ21p+ θ22(1− p)

]
(θ1 + θ2)2p

(ζ21 − ζ∗21)
2

becomes negative for any (ϕ1, ψ1, ζ21) ̸= (ϕ∗1, ψ
∗
1, ζ

∗
21) in Ω2, and zero for (ϕ1, ψ1, ζ21) =

(ϕ∗1, ψ
∗
1, ζ

∗
21).

Then, supposing the endemic equilibrium of central area E∗
2(ϕ

∗
2, ψ

∗
2), the system of the

epidemic dynamics for the central area can be described from (2.2) as follows:

dϕ2
dt

= −Rc
0γ2(ψ2 − ψ∗

2)(ϕ2 − ϕ∗2)− Rc
0γ2ψ

∗
2(ϕ2 − ϕ∗2)− θ2(ϕ2 − ϕ∗2)

− (γ2 + θ2)(ψ2 − ψ∗
2);

dψ2

dt
= Rc

0γ2(ψ2 − ψ∗
2)(ϕ2 − ϕ∗2) + Rc

0γ2ψ
∗
2(ϕ2 − ϕ∗2),

(D.4)

where ϕ∗2 = 1/Rc
0, ψ

∗
2 = θ2(1− ϕ∗2)/(γ2 + θ2). Let us define the set Ω′

2 = {(ϕ2, ψ2)|ϕ2 ≥
0, ψ2 ≥ 0, ϕ2 + ψ2 ≤ 1}, we can find the following Lyapunov equation:

V (ϕ2, ψ2) =
[
(ϕ2 − ϕ∗2) + (ψ2 − ψ∗

2)
]2

+
2(2θ2 + γ2)

Rc
0γ2

[
(ψ2 − ψ∗

2)− ψ∗
2 log

ψ2

ψ∗
2

]
which is positive for any (ϕ2, ψ2) ̸= (ϕ∗2, ψ

∗
2) in Ω′

2, and V (ϕ∗2, ψ
∗
2) = 0. Further,

dV (ϕ2, ψ2)

dt
= −2θ2(ϕ2 − ϕ∗2)

2 − 2(γ2 + θ2)(ψ2 − ψ∗
2)

2

becomes negative for any (ϕ2, ψ2) ̸= (ϕ∗2, ψ
∗
2) in Ω′

2, and zero for (ϕ2, ψ2) = (ϕ∗2, ψ
∗
2).

Thus, under the strong lockdown, the endemic equilibrium E∗
s (ϕ

∗
1, ψ

∗
1, ζ

∗
11, ζ

∗
21, ϕ

∗
2, ψ

∗
2, ζ

∗
22)

is globally asymptotically stable.

Then, consider the stability of endemic equilibrium under the complete lockdown,

the case of α1 = α2 = p = 0. Supposing the endemic equilibrium of peripheral area

E∗
11(ϕ

∗
1, ψ

∗
1), the system of the epidemic dynamics for the peripheral area can be described
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from (2.2) as follows:

dϕ1
dt

= −Rr
0γ1(ψ1 − ψ∗

1)(ϕ1 − ϕ∗1)− Rr
0γ1ψ

∗
1(ϕ1 − ϕ∗1)− θ1(ϕ1 − ϕ∗1)

− (γ1 + θ1)(ψ1 − ψ∗
1);

dψ1

dt
= Rr

0γ1(ψ1 − ψ∗
1)(ϕ1 − ϕ∗1) + Rr

0γ1ψ
∗
1(ϕ1 − ϕ∗1),

where ϕ∗1 = 1/Rr
0 , ψ

∗
1 = θ1(1−ϕ∗1)/(θ1+ γ1). Define the set Ω′

1 = {(ϕ1, ψ1)|ϕ1 ≥ 0, ψ1 ≥
0, ϕ1 + ψ1 ≤ 1}, we can find the following Lyapunov equation:

V (ϕ1, ψ1) =
[
(ϕ1 − ϕ∗1) + (ψ1 − ψ∗

1)
]2

+
2(2θ1 + γ1)

Rr
0γ1

[
(ψ1 − ψ∗

1)− ψ∗
1 log

ψ1

ψ∗
1

]
which is positive for any (ϕ1, ψ1) ̸= (ϕ∗1, ψ

∗
1) in Ω′

1, and V (ϕ∗1, ψ
∗
1) = 0. Further,

dV (ϕ1, ψ1)

dt
= −2θ1(ϕ1 − ϕ∗1)

2 − 2(γ1 + θ1)(ψ1 − ψ∗
1)

2

becomes negative for any (ϕ1, ψ1) ̸= (ϕ∗1, ψ
∗
1) in Ω′

1, and zero for (ϕ1, ψ1) = (ϕ∗1, ψ
∗
1).

Then, supposing the endemic equilibrium of central area E∗
22(ϕ

∗
2, ψ

∗
2), the system of the

epidemic dynamics for the central area can be described from (2.2) as follows:

dϕ2
dt

= −Rc
0γ2(ψ2 − ψ∗

2)(ϕ2 − ϕ∗2)− Rc
0γ2ψ

∗
2(ϕ2 − ϕ∗2)− θ2(ϕ2 − ϕ∗2)

− (γ2 + θ2)(ψ2 − ψ∗
2);

dψ2

dt
= Rc

0γ2(ψ2 − ψ∗
2)(ϕ2 − ϕ∗2) + Rc

0γ2ψ
∗
2(ϕ2 − ϕ∗2),

where ϕ∗2 = 1/Rc
0, ψ

∗
2 = θ2(1− ϕ∗2)/(γ2 + θ2). Let us define the set Ω′

22 = {(ϕ2, ψ2)|ϕ2 ≥
0, ψ2 ≥ 0, ϕ2 + ψ2 ≤ 1}, we can find the following Lyapunov equation:

V (ϕ2, ψ2) =
[
(ϕ2 − ϕ∗2) + (ψ2 − ψ∗

2)
]2

+
2(2θ2 + γ2)

Rc
0γ2

[
(ψ2 − ψ∗

2)− ψ∗
2 log

ψ2

ψ∗
2

]
which is positive for any (ϕ2, ψ2) ̸= (ϕ∗2, ψ

∗
2) in Ω′

22, and V (ϕ∗2, ψ
∗
2) = 0. Further,

dV (ϕ2, ψ2)

dt
= −2θ2(ϕ2 − ϕ∗2)

2 − 2(γ2 + θ2)(ψ2 − ψ∗
2)

2

becomes negative for any (ϕ2, ψ2) ̸= (ϕ∗2, ψ
∗
2) in Ω′

22, and zero for (ϕ2, ψ2) = (ϕ∗2, ψ
∗
2).

Thus, under the complete lockdown, endemic equilibrium E∗
c is globally asymptotically

stable.

22


	Introduction
	Mathematical Modeling 
	Assumptions
	Epidemic dynamics
	Different types of lockdown

	Basic Reproduction Numbers
	Existence and Stability of Equilibrium
	Disease-free equilibrium
	Endemic equilibrium
	Endemic size

	The Order of Endemic Sizes
	Discussion
	Bibliography
	Appendix A. Derivation of the basic reproduction numbers
	Appendix B. Proof of Theorem 4.1
	Appendix C. Proof of Lemma 4.1
	Appendix D. Proof of Theorem 4.2

